Search results

Search for "non-covalent functionalization" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • the surface blocking with PBS, the signal did not reach the saturation. This behaviour was observed in most of the experiments we carried out both during covalent and non-covalent functionalization. We hypothesize that PBS diluted in BSA attach gradually to all the surface sites not having bound
  • also account for the observed trend. The response of the SMR-based gravimetric sensor is comparable to that obtained in similar biosensors subjected to a silane-based functionalization [24]. Non-covalent functionalization According to previous studies [25], non-covalent binding is possible on pristine
  • and drawbacks of the non-covalent functionalization method, which is beyond the purpose of this work, needs to be done before concluding that this functionalization method is as reliable as the covalent one. However, regardless of the functionalization method, graphene directly grown on gravimetric
PDF
Album
Full Research Paper
Published 29 Apr 2019

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • ) physical or non-covalent functionalization [40]. The different methods for the functionalization of MLG and CNTs have been summarized in Table 2. Chemical or covalent functionalization: Chemical functionalization of CNTs is the attachment of chemical groups either at the ends or at the sidewalls [55][57
  • al. attached carboxy groups on CNTs and then dispersed these surface-modified CNTs in an epoxy resin without curing agent. Spectroscopic and thermal analysis showed covalent interfacial bonds [124]. Physical or non-covalent functionalization: Supermolecular complexes of filler are formed through
PDF
Album
Full Research Paper
Published 12 Aug 2016

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • modifications consisted in non-covalent functionalization. Direct in situ generation of superpara- and ferromagnetic species in the presence of these derivatives of oMWCNT were reported. Wu co-precipitated Fe(II) and Fe(III) chlorides with NaOH in oMWCNT dispersion, obtaining a nanocrystalline deposit of Fe3O4
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Optical absorption signature of a self-assembled dye monolayer on graphene

  • Tessnim Sghaier,
  • Sylvain Le Liepvre,
  • Céline Fiorini,
  • Ludovic Douillard and
  • Fabrice Charra

Beilstein J. Nanotechnol. 2016, 7, 862–868, doi:10.3762/bjnano.7.78

Graphical Abstract
  • -packed PTCDA molecules deposited on epitaxial graphene have also been observed [21]. In turn, self-assembly of adsorbed conjugated molecules can influence the electronic properties of its substrate. Such a non-covalent functionalization is especially suitable in the case of graphene because of its
PDF
Album
Letter
Published 14 Jun 2016

A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons

  • Ping Du,
  • David Bléger,
  • Fabrice Charra,
  • Vincent Bouchiat,
  • David Kreher,
  • Fabrice Mathevet and
  • André-Jean Attias

Beilstein J. Nanotechnol. 2015, 6, 632–639, doi:10.3762/bjnano.6.64

Graphical Abstract
  • graphene. For this reason, the non-covalent functionalization of graphene is expected to be more interesting, offering the opportunity to attach any functionality while simultaneously maintaining the integrity of the sp2-hybridized carbon network (i.e., not disturbing its electronic substrate properties
  • -covalent functionalization of graphene by supramolecular self-assembly In the third stage, it was recently demonstrated that the Janus tecton concept is a versatile platform that can be used towards the non-covalent functionalization of graphene [25]. Before presenting the details of this strategy, it must
  • HOPG, used as a versatile new tool for a similar non-covalent functionalization of graphene. To ensure the versatility compared to our previous work, the synthetic sequence as well as the pillar design were revisited and rationalized. In fact, we developed a synthetic convergent strategy (Figure 5
PDF
Album
Review
Published 03 Mar 2015

Advances in NO2 sensing with individual single-walled carbon nanotube transistors

  • Kiran Chikkadi,
  • Matthias Muoth,
  • Cosmin Roman,
  • Miroslav Haluska and
  • Christofer Hierold

Beilstein J. Nanotechnol. 2014, 5, 2179–2191, doi:10.3762/bjnano.5.227

Graphical Abstract
  • nanotubes [16][57]. Non-covalent functionalization, such as metal or polymer functionalization, has been extensively studied. For example, Penza et al. [16] have shown that the sensitivity of multiwalled nanotubes to NO2 is enhanced by the use of Pt nanoparticles. However, a comparable study on individual
PDF
Album
Review
Published 20 Nov 2014

Sequence-dependent electrical response of ssDNA-decorated carbon nanotube, field-effect transistors to dopamine

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2113–2121, doi:10.3762/bjnano.5.220

Graphical Abstract
  • thymine (T), which binds on the SWCNT surface through non-covalent π–π stacking interactions [12]. Moreover, this non-covalent functionalization is more desirable than covalent functionalization methods because it preserves the electronic properties of SWCNT while covalent methods may disrupt the nanotube
PDF
Album
Full Research Paper
Published 13 Nov 2014

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • method of choice. The covalent as well as the non-covalent functionalization of CNTs [22][23][24] have been widely studied in the past decades and can serve as inspiration for possible synthetic strategies to decorate CNOs with a variety of functional groups and also to increase the solubility of CNO
  • (styrenesulfonate) (PEDOT:PSS) [47]. In a very recent study, they reported the non-covalent functionalization of CNOs with poly(4-vinylpyridine-co-styrene) (PVPS) and poly(ethylene glycol)/Polysorbate 20 (PEG/P20) [48]. The PVPS polymers were then further functionalized with thiols. Both CNO-containing polymers
  • materials. The following chapter summarizes the published literature regarding the reported methods for the covalent functionalization of CNOs (Scheme 1 and Table 1). In addition, we will give an overview over some CNO-containing composite materials. Except for some of these composites, the non-covalent
PDF
Album
Review
Published 04 Nov 2014

Non-covalent and reversible functionalization of carbon nanotubes

  • Antonello Di Crescenzo,
  • Valeria Ettorre and
  • Antonella Fontana

Beilstein J. Nanotechnol. 2014, 5, 1675–1690, doi:10.3762/bjnano.5.178

Graphical Abstract
  • in order to act as a good carbon nanotube dispersant both in water and in organic solvents. The review pinpoints also a few examples of dispersant design. The last section is devoted to the exploitation of the major quality of non-covalent functionalization that is its reversibility and the
  • possibility to obtain stimuli-responsive precipitation or dispersion of CNTs. Keywords: carbon nanotubes; non-covalent functionalization; π-stacking; reversible dispersion/precipitation; Introduction Carbon nanotubes (CNTs) are hollow cylindrical tubes with nanometer scale diameters and lengths up to a few
  • attachment of molecular pendants to the Csp2 backbone [19][20] and ii) non-covalent functionalization by adsorption of molecules onto the nanotube surface [21]. Alternatively, in order to use CNTs for elected applications, encapsulation of molecules in the inner empty cavity of the nanotubes has been
PDF
Album
Review
Published 30 Sep 2014

Growth and characterization of CNT–TiO2 heterostructures

  • Yucheng Zhang,
  • Ivo Utke,
  • Johann Michler,
  • Gabriele Ilari,
  • Marta D. Rossell and
  • Rolf Erni

Beilstein J. Nanotechnol. 2014, 5, 946–955, doi:10.3762/bjnano.5.108

Graphical Abstract
  • single-wall CNTs or graphene by specific treatments which attack the surface and introduce defects [24]. The treatments can be divided into covalent and non-covalent functionalization. An ozone treatment, as an example for covalent functionalization, is simple to integrate into the ALD process and was
PDF
Album
Review
Published 02 Jul 2014

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • nanoparticle) can occur at the fullerenic caps, which are more reactive than the CNT sidewalls [16], at the defects, or exclusively at the sidewalls of the nanotubes. The non-covalent functionalization (creation of a physical bond between the CNT and the chemical group or particle) involves for instance CNTs
PDF
Album
Review
Published 22 Feb 2013
Other Beilstein-Institut Open Science Activities